Search results for "complete metric space"

showing 10 items of 26 documents

Best proximity point theorems for proximal cyclic contractions

2017

The purpose of this article is to compute a global minimizer of the function $$x\longrightarrow d(x, Tx)$$ , where T is a proximal cyclic contraction in the framework of a best proximally complete space, thereby ensuring the existence of an optimal approximate solution, called a best proximity point, to the equation $$Tx=x$$ when T is not necessarily a self-mapping.

021103 operations researchProximal cyclic contractionApplied Mathematics010102 general mathematicsMathematical analysisBest proximity point0211 other engineering and technologies02 engineering and technologyFunction (mathematics)Fixed pointTopology01 natural sciencesComplete metric spaceCyclic contractionSettore MAT/05 - Analisi MatematicaModeling and SimulationPoint (geometry)Global minimizationGeometry and Topology0101 mathematicsApproximate solutionMathematics
researchProduct

Fixed Points for Multivalued Convex Contractions on Nadler Sense Types in a Geodesic Metric Space

2019

In 1969, based on the concept of the Hausdorff metric, Nadler Jr. introduced the notion of multivalued contractions. He demonstrated that, in a complete metric space, a multivalued contraction possesses a fixed point. Later on, Nadler&rsquo

<b>54H25</b>Physics and Astronomy (miscellaneous)GeodesicGeneral MathematicsMathematics::General TopologyFixed-point theorem02 engineering and technologyFixed point01 natural sciencesComplete metric spacegeodesic metric spaceCombinatoricsregular golbal-inf function0202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)0101 mathematicsMathematicsStatistics::Applicationslcsh:Mathematics010102 general mathematicsRegular polygonconvex multivalued left A-contractionlcsh:QA1-939Metric spaceHausdorff distancefixed point<b>47H10</b>Chemistry (miscellaneous)<title>MSC</title>020201 artificial intelligence & image processingright A-contractionSymmetry
researchProduct

Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations

2014

Abstract Ran and Reurings (Proc. Am. Math. Soc. 132(5):1435-1443, 2004) proved an analog of the Banach contraction principle in metric spaces endowed with a partial order and discussed some applications to matrix equations. The main novelty in the paper of Ran and Reurings involved combining the ideas in the contraction principle with those in the monotone iterative technique. Motivated by this, we present some common fixed point results for a pair of fuzzy mappings satisfying an almost generalized contractive condition in partially ordered complete metric spaces. Also we give some examples and an application to illustrate our results. MSC:46S40, 47H10, 34A70, 54E50.

Algebra and Number Theoryfuzzy mappingApplied MathematicsFixed-point theoremFuzzy logicComplete metric spaceAlgebraMetric spaceSettore MAT/05 - Analisi Matematicacomplete metric spaceordinary fuzzy differential equationaltering distance functionContraction principleC0-semigroupDifferential algebraic equationAnalysisNumerical partial differential equationsMathematicsAdvances in Difference Equations
researchProduct

Iterationsverfahren höherer Ordnung in Banach-Räumen

1969

The Newton process for operator equations in say a linear normed complete space converges under certain hypothesis about the Frechet-derivatives of the operator with at least the order two. There are different ways to improve this Newton process. For instance you obtain a process of order three if you add a correction element containing the second Frechet-derivative of the operator [1]. In the following note we will generalize this idea. In a recursive manner -- by adding higher derivatives -- we will construct iterative processes of any orderk (k > 1). A general theorem due toCollatz provides us error estimates for this processes. Last we will illustrate the processes by several examples.

AlgebraComputational MathematicsOperator (computer programming)General theoremApplied MathematicsNumerical analysisProcess (computing)Order (group theory)Construct (python library)Element (category theory)Complete metric spaceMathematicsNumerische Mathematik
researchProduct

An Integral Version of Ćirić’s Fixed Point Theorem

2011

We establish a new fixed point theorem for mappings satisfying a general contractive condition of integral type. The presented theorem generalizes the well known Ciric's fixed point theorem [Lj. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (26) (1971) 19-26]. Some examples and applications are given.

AlgebraPure mathematicsSchauder fixed point theoremPicard–Lindelöf theoremSettore MAT/05 - Analisi MatematicaGeneral MathematicsFixed-point theoremType (model theory)Fixed pointBrouwer fixed-point theoremKakutani fixed-point theoremComplete metric space $\lambda$-generalized contraction fixed point contractive condition of integral type.MathematicsMediterranean Journal of Mathematics
researchProduct

Basic Sequences in the Dual of a Fréchet Space

2001

Discrete mathematicsAlgebrac spaceBs spaceFréchet spaceGeneral MathematicsReflexive spaceOperator spaceSequence spaceComplete metric spaceMathematicsDual (category theory)Mathematische Nachrichten
researchProduct

Some fixed point theorems for generalized contractive mappings in complete metric spaces

2015

We introduce new concepts of generalized contractive and generalized alpha-Suzuki type contractive mappings. Then, we obtain sufficient conditions for the existence of a fixed point of these classes of mappings on complete metric spaces and b-complete b-metric spaces. Our results extend the theorems of Ciric, Chatterjea, Kannan and Reich.

Discrete mathematicsApplied MathematicsFixed-point theoremProduct metricFixed pointComplete metric spaceConvex metric spaceMetric spaceDifferential geometryfixed pointSettore MAT/05 - Analisi Matematicacomplete metric spaceweak C-contractionGeometry and TopologyCoincidence pointMathematicsFixed Point Theory and Applications
researchProduct

Set-Valued Generalizations of Baire′s Category Theorem

1995

Abstract We prove some generalizations of Baire′s category theorem for chains of iterates of multifunctions defined on Cech-complete spaces. In particular, we extend Lennard′s results stated for functions on complete metric spaces.

Discrete mathematicsApplied MathematicsMathematics::General TopologyBaire spaceBaire measureComplete metric spaceS categoryMetric spaceIterated functionMathematics::Category TheoryBaire category theoremOpen mapping theorem (functional analysis)AnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Vector-valued meromorphic functions

2002

A locally complete locally convex space E satisfies that every weakly meromorphic function defined on an open subset of \( \mathbb{C} \) with values in E is meromorphic if and only if E does not contain a countable product of copies of \( \mathbb{C} \). A characterization of locally complete spaces in the spirit of known characterizations of the (metric) convex compactness property is also given.

Discrete mathematicsCompact spaceGeneral MathematicsProduct (mathematics)Regular polygonConvex setCountable setCharacterization (mathematics)Complete metric spaceMeromorphic functionMathematics
researchProduct

A property of connected Baire spaces

1997

Abstract We give a topological version of a classical result of F. Sunyer Balaguer's on a local characterization of real polynomials. This is done by studying a certain property on a class of connected Baire spaces, thus allowing us to obtain a local characterization of repeated integrals of analytic maps on Banach spaces.

Discrete mathematicsLocally connectedBanach spaceBaire category theoremGeometry and TopologyBaire spaceBaire spaceOpen mapping theorem (functional analysis)Baire measureSunyer Balaguer's TheoremComplete metric spaceMathematicsTopology and its Applications
researchProduct